Relative Influence of Edaphic-Site Characteristics on Vegetative Parameters along a Toposequence in Odukpani Local Government Area of Cross River State, Nigeria

Abua M. A.¹, Igelle E. I.¹, Uquetan U. I.¹, Ogar B. I.¹, Atsa J. W. U¹

¹ Department of Geography and Environmental Science University of Calabar, Calabar Calabar – Nigeria

Abstract: The study on the relative influence of edaphic factors and site characteristics on vegetative parameters, along a toposequence in Odukpani Local Government Area of Cross River State, Nigeria was carried out. The multiple linear regression models was employed to examine the relative effect of edaphic factors and site characteristics on vegetative parameters. The tree height (R) explains 76.9% variation, seventeen independent variables (Adjusted R-square) explain 49.5% and dependent variables (R-square) explain 59.1% of the total variation from the upper to the bottom slopes. Tree density (R) explains 63.9% variation, seventeen independent variables (Adjusted R-square) explain 26.8% and dependent variables (R-square) explain 40.8% of the total variation from the upper to the bottom slopes. Species richness (R) explains 74.2% variation, seventeen independent variables (Adjusted R-square) explain 44.5% and dependent variables (R-square) explain 55.1% of the total variation from the upper to the bottom slopes. The soil texture varies from coarse, fine, silt and clay soil. Coarse sand was the dominant soil in the upper, middle and bottom slopes. The dominant of coarse sand affects its ability to retain moisture. Water holding capacity was low and Soil PH was acidic (PH 5.4-5.7) in the upper, middle and bottom slopes. Exchangeable acid, cation exchange capacity and base saturation were also low in the upper, middle and bottom slopes. The study therefore recommends vegetation conservation and sustainable management strategies in the study area.

Keywords: Edaphic factors, Site Characteristics, Vegetative parameters, Upper, Middle, Bottom Slopes.

1. Introduction

The relationship between edaphic factors and vegetation gained prominence in the 1950's to the present (Clayton, 1958; Wilde, 1958; langdale-Brown, 1968; Trudgill, 1977; Eyre, 1968; Adejuwon & Ekanade, 1984; Abua & Ajake, 2015). Edaphic factors and vegetation have a common relationship. According to Food and Agriculture Organization of the United Nation (2015), edaphic factors encourages plant growth, in return vegetation, tree cover and forests prevent soil degradation. Though, variation in elevation, gradient and positions on a toposequence greatly influence vegetative parameters (Gerrard, 1981; Abua & Ajake, 2015).

A toposequence comprises of upper, middle and bottom slope, each is covered by different edaphic factors and vegetation (Lawson, 1970). Edaphic factors vary from the upper to the foot slopes on topographical sequences (Aweto, 1987; Furley, 1971). Edaphic factors and site characteristics such as slope gradients, elevation and distance from crest summit, coarse sand, silt, fine sand, clay, soil PH, exchangeable bases, exchangeable acid, cation exchange capacity and base saturation may greatly influence vegetative parameters from the upper to the bottom slopes.

Several studies have been carried out on slope, soil and vegetation relationship (Acton, 1965; Lansdale, 1968; Furley, 1976; Areola, 1982; Strahler, 1990; Abua & Ajake, 2015). Unfortunately, little work has been done about the relative influence of edaphic factors and site characteristics on

vegetative parameters, along a toposequence in Odukpani Local Government Area of Cross River State, Nigeria. This limitation forms the conviction of this study. The aim of the study is to examine the relative influence of edaphic factors and site characteristics on vegetative parameters, along a toposequence in Odukpani Local Government Area of Cross River State, Nigeria.

2. Study Location

The study area is located in Odukpani Local Government Area of Cross River State, Nigeria. The study area lies approximately between longitude 8^0 08'and 8^0 8' E, and Latitude 6^0 09 and 6^0 7'N. The climate of the area is humid tropical and consists of rainy and dry season. The area experiences double rainfall from 1880mm which span from May-August and 240Smm which span from December-Annual rainfall is approximately 402mm. February. Temperature are uniformly high with a maximum of 30° C and minimum of 23^oC (Abali & Abua, 2016). The annual average vapour pressure is 29 Millibars and has a high relative humidity which ranged from 80-100%. The area has a high salinity which ranged from 3.8% in the dry season and low salinity of about 0.5% in the rainy season (Ukpong, 1995). The study area lies within the Flood Plain Zone of Cross River and has relatively low lying terrain from the shore of the Calabar River. The vegetation is a mixture of mangrove and tropical

rainforest. The area serves as the only woodlot of the then natives and source of non-timber products (Fig. 1).

Figure 1: Showing map of Odukpani Local Government Area in Cross River State, Nigeria.

3. MATERIALS AND METHODS

Field Study

The upper, middle and bottom slopes were dug 0-15cm depth. Thirty replicate of $20m \times 20m$ were collected from topsoil on the upper, middle and bottom slopes. The samples were collected randomly from selected points using soil Auger. The soil samples were air dried, sieved through a 2mm sieve and taken to the Laboratory for analysis. Tree height was measured with Altimeter. The context of a tree ranged from 2 meter tall and breast width 2cm diameter (Aweto, 1987). Slope angle and site elevation above stream level were measured with the aid of Abney level. The elevation was determined by the trigonometrical principle.

Laboratory Procedure

Particle size composition was analyzed using hydrometer (Bouyocous, 1926). Water holding capacity was determined by saturating the soil sample and later subjecting them to gravitational draining, and oven drying for 24 hours at 105°C. Exchangeable bases were determined by first leaching the soil sample with 1m neutral ammonium acetate. The concentrations of calcium, potassium and sodium were determined with a Flame Photometer. Magnesium was determined with an Atomic Absorption Spectrophotometer. Soil PH was determined Potentiometrically in 0.01m calcium chloride using soil to calcium chloride solution ratio 1:2. Cation exchange capacity was determined by summation method (Chapman, 1965). Soil organic matter was determined by Anglicizing the organic carbon content of the soil. The percentage Organic Matter was converted by multiplying 1.724 (Walkey & Black, 1934). **Statistical Analysis**

The multiple linear regression models (SPSS Software version 22, entering 0.05 and remove variables 0.10) were used to determine the relative influence of edaphic factors and site characteristics on vegetative parameters, from the upper slope to the foot slope. The vegetation parameters are tree height, tree density and species richness as dependent variables. Seventeen edaphic factors and site characteristics represent independent variables.

4. RESULTS AND DISCUSSION

Edaphic Factors

Table 1 is the representation of the results of edaphic factors. The table represents the results of topsoil in the upper, middle and bottom slopes. The total size distribution of coarse sand in the topsoil varies from 60.3, 62.1 and 57.5% in the upper, middle and bottom slopes respectively. Fine sand constitutes 16.0, 14.5 and 18.3%, silt varies from 15.4, 14.8 and 1.6%, while clay varies from 8.2, 8.1 and 11.1% respectively in the upper, middle and bottom slopes. Coarse sand is the dominant soil particle and constitutes over 50% in the upper, middle and bottom slopes. The water holding capacity in the topsoil varies from 37.9, 36.3 and 38.4% respectively in the upper, middle and bottom slopes. The water holding capacity decrease slightly in the middle slope and increases slightly in the bottom slope.

Organic carbon content varies from 1.6, 1.7 and 1.7% respectively, in the upper, middle and bottom slopes. The organic content was very low below 2% and increases slightly in the middle and bottom slopes by 0.1%. The organic matter accumulates in the middle and bottom slope, as a result of slow decomposition rate due to water logging. Soil PH ranged from PH 5.4-5.7. This indicates that, the soils are acidic and may not favor majority of agricultural crops. Soil PH for majority of agricultural crops ranged from PH 6.0-7.5 (Brady, 1990). Exchangeable calcium varies from 1.7, 1.5 and 1.5me/100g, magnesium ranged from 1.3, 1.1 and 1.4me/100g, sodium constitutes 0.2, 0.2 and 0.1me/100g, and potassium ranged from 0.1, 0.1 and 0.1me/100g respectively in the upper, middle and bottom slopes. Exchangeable bases in the upper, middle and bottom slopes were generally low. Exchangeable acid ranged from 0.4, 0.5 and 0.5me/100g respectively in the upper, middle and bottom slopes. Cation exchange capacity varies from 3.9, 3.6 and 3.9me/100g respectively in the upper, middle and bottom slopes. Base saturation ranged from 86, 83 and 85% respectively in the upper, middle and bottom slopes.

Site Characteristics

Table 1 is the representation of the results of site characteristics. The table represents the results of topsoil in the upper, middle and bottom slopes. Site characteristics constitutes slope gradients, elevation of sampling points above stream level, and distance of points between the streams and crest summit. The mean gradient ranged from 3.1, 2.3 and 0.9° respectively in the upper, middle and bottom slopes. Mean elevation above stream level ranged from 4.3, 3.2 and 1.0m respectively in the upper, middle and bottom slopes. Mean distance between the stream and crest summit varies from 110, 292, and 510m respectively in the upper, middle and bottom slopes. Mean slopes. Mean gradient and elevation decreases downward from

middle to bottom slopes. Though, the mean distance between the stream and crest summit decrease upward from middle to upper slope.

Vegetative Parameters

Table 1 shows the results of vegetative parameters. The table represents the results of topsoil in the upper, middle and bottom slopes. Vegetative parameters constitute tree height, tree density and species richness in the upper, middle and bottom slopes. Tree height ranged from 28.2, 26.7 and 18.4m respectively in the upper, middle and bottom slopes. Tree density varies from 147.8, 142.9 and 112.1/400m² respectively in the upper, middle and bottom slopes. Species richness ranged from 14.8, 14.2 and 11.4/400m² in the upper, middle and bottom slopes. Tree height decreases in the middle and bottom slope, similarly there is a decrease in tree density and species richness in the middle and bottom slopes. This can be attributed to the elevation and position of points on the slopes.

Table 1: Mean values of edaphic factors, site characteristics and vegetative parameters												
Mean Water Holding Mean Coarse Sand (%)						Mean Fine Sand (%) Mean Silt (%)						
Capacity	r (%)											
Upper	Middle	Bottom	Upper	Middle	Bottom	Upper	Middle	Bottom	Upper	Middle	Bottom	
37.91	36.38	38.47	60.36	62.17	57.56	16.03	14.52	18.35	15.46	14.80	1.60	
Mean Cl	ay (%)		Mean Or	ganic Carl	50n (%)	Mean Sc	oil PH		Mean Ba	lean Base Saturation (%)		
Upper	Middle	Bottom	Upper	Middle	Bottom	Upper	Middle	Bottom	Upper	Middle	Bottom	
8.2	8.1	11.1	1.67	1.71	1.71	5.7	5.4	5.5	86.9	83.9	85.8	
EXCHANGEABLE BASES												
Mean	Ca^{++} me/	100g	Mean Mg ⁺⁺ me/100g			Mean Na	a ⁺ me/100g		Mean K ⁺ me/100g			
Upper	Middle	Bottom	Upper	Middle	Bottom	Upper	Middle	Bottom	Upper	Middle	Bottom	
1.75	1.54	1.59	1.39	1.16	1.48	0.21	0.20	0.19	0.16	0.15	0.15	
Mean I	Exchangeal	ble Acid	Mean	Cation	Exchange	Mean G	radient (De	egree)	Mean Elevation above			
me/100g	2011		Capacity	me/100g		**	2011		stream le	evel (m)		
Upper	Middle	Bottom	Upper	Middle	Bottom	Upper	Middle	Bottom	Upper	Middle	Bottom	
0.49	0.58	0.52	3 .90	3 .61	3. 92	3.1	2.3	0.9	4.3	3.2	1.0	
Mean Distance from Crest			Mean Tr	ee Height	(m)	Mean	Tree	Density	Mean	Species	Richness	
Summit (m)						(No./400	m^2)		(No./400)m ²)		
Upper	Middle	Bottom	Upper	Middle	Bottom	Upper	Middle	Bottom	Upper	Middle	Bottom	
110	292	510	28.2	26.7	18.4	147.8	142.9	112.1	14.8	14.2	11.4	

Relative influence of Edaphic Factors and Site Characteristics on Tree Height

Tables 2 and 3 are the results of tree height, edaphic factors and site characteristics. Multiple linear regression models were used to analyze the relative influence of edaphic factors and site characteristics on vegetative parameters from the upper to the bottom slopes. Seventeen independent variables of edaphic and site characteristics were regressed with tree height as dependent variable. The model summary (R) explains 76.9%, seventeen independent variables (adjusted R-Square) explain 49.5% and dependent variables (R-Square) explain 59.1% of the total variation of edaphic factors and site characteristics on tree height from the upper to the bottom slopes. The rotated component matrix and regression coefficient was used to analyze the variables and converged in nine iterations. The component matrix loads strongly on the following components. silt 0.97, base saturation 0.58, soil PH 0.92, potassium 0.95, calcium 0.92, clay 0.89, organic carbon 0.97 and sodium 0.95 respectively. These components matrix have positive

regression coefficient on the following factors silt 0.89, soil PH 1.66, potassium 2.03, calcium 1.04, clay 0.34, organic carbon 0.72, base saturation 0.90 and sodium 18.3 from the upper to the bottom slopes. This suggest that, tree height is expected to be higher in every unite increase in the soil PH, silt, potassium, calcium, base saturation, clay, organic carbon and sodium.

Similarly, the component matrix loads strongly on the following components with negative regression coefficient. The component matrix includes gradient -0.89, elevation -0.94, cation exchange capacity -0.62, coarse sand -0.97 and water holding capacity -0.97 respectively. These component matrix have negative regression coefficient on the following factors gradient -3.49, elevation -3.24, cation exchange capacity -1.52, coarse sand -0.016 and water holding capacity -0.008 from the upper to the bottom slopes. This results revealed that, tree height is expected to be low in every unite decrease in the gradient, elevation, cation exchange capacity, coarse sand and water holding capacity.

	Component									
	1	2	3	4	5	6	7	8	9	10
WHC	014	011	027	045	.007	.115	042	056	.978	.053
FineSand	809	.296	.243	.006	.191	.172	035	.101	.049	079
Silt	.973	088	023	012	.005	117	.002	013	026	.024
OrganicC	050	005	.045	.014	.048	.010	.973	058	043	.109
SoilPH	.207	.110	.922	.119	.107	056	.076	007	011	.005
BaseS	.025	.585	.361	.041	.416	.270	244	029	048	.033
Calcium	.140	.130	.129	.051	.918	130	.078	107	.016	057
Magnesium	511	.342	.480	057	.309	.246	081	.064	097	.015
Sodium	.170	094	.002	028	098	.036	060	.952	061	094
Potassium	.047	.002	.033	.952	030	.012	004	067	065	031
EAcid	021	929	058	089	046	.124	058	.101	002	.077
CEC	184	.412	.196	.619	.267	.310	.051	.123	.059	.049
Gradient	.894	.116	.115	032	.051	107	044	.201	.039	.074
Elevation	.944	.111	.167	012	.015	104	.009	.100	.019	.016
DCrestS	929	153	177	002	159	.068	.051	086	021	021
Clay	203	020	010	.105	118	.892	.016	.033	.141	.056
CoarseS	.076	058	.008	014	046	.046	.110	089	.054	.974
THeight	.741	164	048	.013	.192	.375	067	014	111	109

 Table 2: Tree Height Rotated Component Matrix^a Extraction Method: Principal Component Analysis Rotation

 Method: Varimax with Kaiser Normalization. a. Rotation converged in 9 iterations.

Table 3: Tree Height Coefficients^a

				Standardized		
		Unstandardized Coefficients		Coefficients		
Model		В	Std. Error	Beta	Т	Sig.
1	(Constant)	-37.756	50.696		745	.459
	WHC	008	.054	011	139	.890
	FineSand	466	.909	118	513	.609
	Silt	.892	.485	.869	1.841	.070
	OrganicC	.729	3.230	.018	.226	.822
	SoilPH	1.661	3.766	.044	.441	.661
	BaseS	.901	.474	.229	1.901	.061
	Calcium	1.044	3.410	.031	.306	.760
	Magnesium	-3.511	4.788	092	733	.466
	Sodium	18.305	9.140	.182	2.003	.049
	Potassium	2.033	8.896	.021	.228	.820
	EAcid	5.183	8.897	.057	.583	.562
	CEC	-1.529	2.812	063	544	.588
	Gradient	-3.493	1.376	519	-2.539	.013
	Elevation	-3.242	2.014	695	-1.610	.112
	DCrestS	034	.020	844	-1.716	.091
	Clay	.343	.130	.243	2.630	.010
	CoarseS	016	.027	048	584	.561

Relative influence of Edaphic Factors and Site Characteristics on Tree Density

Tables 4 and 5, show the results of tree density, edaphic factors and site characteristics. Multiple linear regression models revealed that, (R-Square) explains 63.9%, seventeen independent variables (adjusted-R Square) explain 26.8% and dependent variables (R-Square) explain 40.8% of the total variation of edaphic factors and site characteristics on tree density from the upper to the bottom slopes. The rotated component matrix and regression coefficient were used to analyze the variables and converged in nine iterations. The component matrix loads strongly on the following components, silt 0.975, base saturation 0.628, clay 0.887, calcium 0.88, sodium 0.961 and coarse sand respectively. These components matrix have positive regression coefficient on the following

		Component									
	1	2	3	4	5	6	7	8	9	10	
WHC	011	012	038	046	.104	.012	047	041	.977	.061	
FineSand	809	.320	.264	.004	.130	.142	.100	026	.057	075	
Silt	.975	107	040	011	063	.047	017	006	039	.015	
OrganicC	048	010	.041	.016	.002	.048	057	.973	040	.111	
SoilPH	.230	.097	.892	.114	055	.097	001	.084	024	.009	
BaseS	.003	.628	.415	.058	.190	.323	031	237	014	.036	
Calcium	.117	.182	.190	.061	140	.880	127	.075	.030	070	
Magnesium	517	.376	.532	049	.185	.217	.045	070	073	.004	
Sodium	.161	084	.008	023	.028	096	.961	058	050	087	
Potassium	.045	001	.017	.950	.001	023	057	005	068	022	
EAcid	044	919	032	079	.136	022	.093	069	.008	.072	
CEC	192	.438	.234	.625	.282	.203	.098	.059	.069	.030	
Gradient	.911	.098	.116	028	052	.056	.173	045	.028	.043	
Elevation	.958	.089	.148	012	048	.040	.088	.006	.003	002	
DCrestS	933	145	174	006	.028	169	074	.054	013	005	
Clay	233	.001	.035	.120	.887	155	.000	.014	.153	.031	
CoarseS	.076	049	.012	012	.038	050	083	.112	.062	.979	
TDensity	.512	201	184	115	.475	.398	.184	091	164	.071	

 Table 4: Tree Density Rotated Component Matrix^a Extraction Method: Principal Component Analysis Rotation

 Method: Varimax with Kaiser Normalization. a. Rotation converged in 9 iterations.

factors silt4.46, base saturation 1.04, clay, 1.93, calcium 22.18, sodium, 100.00, and coarse sand, 0.11 respectively from the upper, middle to the bottom slopes. This suggest that, tree density is expected to be higher in every unite increase in the bases saturation, silt, calcium, sodium, clay and coarse sand. Similarly, the component matrix loads strongly with negative regression coefficient. The component matrix includes soil PH -0.892, potassium -0.950, magnesium -0.532, gradient -0.911,

elevation -0.958, organic carbon -0.973 and water holding capacity -0.979 respectively .The components matrix negative regression coefficient comprises soil PH -8.11, potassium - 29.49, magnesium -18.84, gradient -8.65, elevation -9.52, organic carbon -7.08 and water holding capacity -0.23 from the upper to the bottom slopes. This indicates that, tree density is expected to be low in every unite decrease in the gradient, elevation, soil PH, organic carbon, magnesium and potassium.

		1 au	le 5. Thee Delisity	Coefficients		
		Unstandardi	zed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
	(Constant)	15.530	297.175		.052	.958
	WHC	239	.319	074	750	.456
	FineSand	4.688	5.329	.244	.880	.382
	Silt	4.463	2.842	.892	1.570	.121
	OrganicC	-7.088	18.937	037	374	.709
	SoilPH	-8.114	22.074	045	368	.714
	BaseS	1.041	2.779	.054	.374	.709
	Calcium	22.189	19.992	.134	1.110	.271
	Magnesium	-18.848	28.064	102	672	.504
	Sodium	100.000	53.576	.204	1.866	.066
	Potassium	-29.499	52.150	062	566	.573
	EAcid	42.598	52.154	.096	.817	.417
	CEC	-8.096	16.487	068	491	.625
	Gradient	-8.656	8.064	264	-1.073	.287
	Elevation	-9.527	11.806	419	807	.422
	DCrestS	082	.115	423	714	.478
	Clay	1.936	.764	.281	2.535	.013
	CoarseS	.117	.157	.074	.745	.459

Table 5: Tree Density Coefficients^a

Relative influence of Edaphic Factors and Site Characteristics on Species Richness

Tables 6 and 7 depict the results on the edaphic factors and site characteristics on species richness. Multiple linear regression

models were used to analyze the relative influence of edaphic factors and site characteristics on vegetative parameters from the upper to the bottom slopes. Seventeen independent variables of edaphic factors and site characteristics were regressed with Species Richnessas dependent variable. The model summary (R-Square) explains 74.2%, seventeen independent variables (adjusted-R Square) explain 44.5% and dependent variables (R-Square) explain 55.1% of the total variation of edaphic factors and site characteristics on species

was conducted. The results revealed that, the soil texture varies from coarse, fine, silt and clay soil. Coarse sand was the dominant soil in the upper, middle and bottom slopes. The dominant of Coarse sand affects its ability to retain moisture.

Table 6: Species Richness Rotated Component Matrix^a Extraction Method: Principal Component Analysis Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 11 iterations.

		Component									
	1	2	3	4	5	6	7	8	9	10	11
Species	.605	140	075	011	.029	.037	.094	.087	.137	007	.707
WHC	019	.000	021	044	002	.101	042	051	.983	.060	.048
FineSand	814	.296	.262	.001	.164	.157	031	.098	.050	074	.045
Silt	.975	101	036	008	.022	099	005	019	037	.014	.052
OrganicC	053	.006	.045	.015	.046	.000	.974	057	043	.111	.011
SoilPH	.215	.094	.921	.121	.097	057	.083	003	002	.005	.005
BaseS	037	.554	.401	.063	.300	.152	231	046	062	.033	.487
Calcium	.142	.123	.139	.041	.936	096	.058	116	.002	059	.053
Magnesium	498	.331	.499	070	.311	.271	095	.056	101	.018	052
Sodium	.162	085	.005	026	105	.018	059	.960	054	087	.032
Potassium	.036	.008	.036	.957	035	.002	.000	058	056	025	012
EAcid	040	943	075	084	066	.091	047	.091	012	.068	.079
CEC	177	.395	.203	.604	.280	.359	.043	.108	.040	.039	.058
Gradient	.912	.089	.104	035	.077	046	059	.176	.005	.051	.062
Elevation	.956	.091	.156	012	.036	065	.000	.088	.000	.001	.054
DCrestS	929	132	174	005	165	.047	.061	073	003	008	115
Clay	194	054	018	.085	094	.944	002	.010	.111	.039	.040
CoarseS	.080	054	.009	013	051	.039	.113	083	.062	.979	.002

richness from the upper to the bottom slopes. The rotated component matrix and regression coefficient were used to analyze the variables and converged in eleven iterations. The component matrix loads strongly and have positive regression coefficient. The component matrix includes Silt 0.975, base saturation, 0.554, calcium, 0.936, clay, 0.944, organic carbon, 0.974, sodium, 0.960 and water holding capacity 0.983 respectively. The positive regression coefficients constitute silt, 0.17, base saturation, 0.47, calcium, 0.38, organic carbon, 1.86, sodium, 5.64 and water holding capacity, 0.03 respectively from the upper to the bottom slopes. This suggest that, species richness is expected to be higher in every unite increase in the organic carbon, silt, base saturation, calcium, clay, sodium and water holding capacity.

Similarly, the component matrix loads strongly and have negative regression coefficient. The component matrix comprises soil PH 0.921, potassium, 0.957, gradient, 0.912, elevation, 0.956 and coarse sand, 0.979 respectively. The negative regression coefficient varies from soil PH, -0.44, potassium, -2.26, gradient, -0.48, elevation, -0.29 and coarse sand, -0.01 from the upper to the bottom slopes. This indicates that, species richness is expected to be low in every unite decrease in the gradient, elevation, coarse sand, soil PH and potassium.

5. CONCLUSIONS

Study of the relative influence of edaphic factors-site characteristics on vegetative parameters along a toposequence

WOAR Journals

Water holding capacity was low and soil PH was acidic along the slope facets. Organic carbon, exchangeable calcium, magnesium, sodium, and potassium were generally low in the upper, middle and bottom slopes. Exchangeable acid, cation exchange capacity and base saturation were also low in the upper, middle and bottom slopes. There was slight decrease on chemical properties in the middle slope and slight increase in the bottom slope. Silt, clay, gradient and elevation dominated and were effective across the vegetative parameters in the multiple linear regression analysis. Though, find sand and distance between the streams and crest summit were not effective on vegetative parameters in the study area. The study further revealed that, the model explains (R-Square) 76.9%, (Adjusted R) 49.5% and R-square 59.1% variation of (17) edaphological factors and site characteristics, when regressed with tree height along the upper, middle and bottom slopes segments of the toposequence respectively. The influence of edaphic factors and site characteristics on tree density explains (R) 63.9%, (Adjusted R) 26.8% and R-square 40.8% variation respectively in the upper, middle and bottom slopes segments along the catena. On species richness, edaphological factors and site characteristics explains (R) 74.2%, (Adjusted R) 44.5% and R-square 55.1% variation of species richness respectively along the toposequence. The results revealed that, edaphic factors and site characteristics greatly influence vegetative parameters. The study therefore recommends vegetation conservation and sustainable management strategies in the area.

Table 7: Species RichnessCoefficients^a

				Standar		
				dized		
		Unstand	ardized	Coeffici		
		Coeffi	cients	ents		
			Std.			
M	odel	В	Error	Beta	t	Sig.
1	(Constant)	-26.967	19.395		-1.390	.169
	WHC	.034	.021	.139	1.625	.108
	FineSand	032	.348	022	093	.927
	Silt	.176	.185	.470	.949	.346
	OrganicC	1.861	1.236	.129	1.506	.137
	SoilPH	448	1.441	033	311	.757
	BaseS	.479	.181	.334	2.643	.010
	Calcium	.380	1.305	.031	.292	.771
	Magnesium	-3.898	1.832	281	-2.128	.037
	Sodium	5.643	3.497	.154	1.614	.111
	Potassium	-2.267	3.404	064	666	.508
	EAcid	5.044	3.404	.152	1.482	.143
	CEC	.129	1.076	.014	.120	.905
	Gradient	487	.526	198	926	.357
	Elevation	290	.771	170	377	.707
	DCrestS	006	.008	405	785	.435
	Clay	.059	.050	.114	1.177	.243
	CoarseS	001	.010	011	122	.903

REFERENCES

- Abali, T. P. and Abua, M. A (2016). Rainfall-Sediment Loss on Land Use Types in Calabar River Catchment, Cross River State, Nigeria. *International Journal of Innovative Environmental Studies Research*, 4(3):7-11.
- [2] Abua, M. A. and Ajake, A. O. (2015). Soil vegetation variability on a toposequence in Obudu Local Government Area of Cross River State, Nigeria. *Journal of Biodiversity Management and Ecology*, 4(3):1-7.
- [3] Acton, D. F. (1965). The relationship between pattern and gradient of slopes to soil type. *Canadian Journal of soil science*, (45) 96-101.
- [4] Adejuwon, J. O. and Ekanade, O. (1984). Soil changes associated with forest/savannah Boundary. Nig, Geogr J., 27(1 and 2): 44-50.
- [5] Areola, O. (1982). Soil variability within land facets in areas of low, smooth relief: A case study on the Gwagwa Plains, Nigeria. *Soil survey and land evaluation*. (2) 9-13.
- [6] Aweto, A. O. (1987). Variability of upper slope soils development on sandstones in Southwestern Nigeria. N. G. J. (25) 27-37.
- [7] Aweto, A. O. (1987). Vegetation and soils of the savanna enclaves of Urhobo plains, Southwestern Nigeria, Catena, 14(2): 177-188.
- [8] Bouyocous, G. J. (1926). Estimation of the colloidal materials in soil. Soil Science, 64:362
- [9] Brady, N. C. (1990). The nature and properties of soils 10th edition, Macmillan Pub.Co.New York.
- [10] Chapman, H. D. (1965). Cation exchange capacity. In: Blacks, C. A. (ed) Method of soil analysis Part II, 891-901, U.S.A Madison, Wisconsin.

- [11] Chapman, H.D. (1965). Cation-exchange capacity, in methods of soil analysis. C. A. Black (ed), pp.891-901, America Society of Agronomy. Madison.
- [12] Clayton, W. D. (1958). Secondary vegetation and transition to savannah near Ibadan, J. Ecol., 46:39-45.
- [13] Eyre, S. R. (1968).Vegetation and soil, a world picture. Edward Arnold, London.
- [14] Food and Agriculture Organization of the United Nation (FAOUN), (2015).International year of soils.
- [15] Furley, P. A. (1971). Relationship between slope form and soil form and properties development over chalk parent materials.Slopes, form and process. Brunsden, D. (ed), Institute of British Geographers Special Publication, (3), 141-164.
- [16] Furley, P. A. (1976). Soil-slope plant relationships in Northern Naya Mountains, Belize Central America II; Variations in the properties of the soil profiles. *Journal of Biogeography* (3) 303-319.
- [17] Gerrard, A. J. (1981). Soils and landforms, and integration of geomorphology and pedology. George Allen and Unwin, London.
- [18] Lansdale, I. B. (1968). The relationship between soils and vegetation. The soil resources of tropical Africa. Moss R. P (ed), 61-73. Cambridge University press.
- [19] Lawson, E. (1970). A catena in tropical moist semidecidous forest near Kade Ghana. Journal of Ecology. (58) 371-98.
- [20] Strahler, A. H. (1978). Response of woody species to site factors of slope angle, rock type and topographic position in Maryland, evaluated by binary discriminant analysis. *Journal of biogeography*.403-28.
- [21] Trudgill, S. T. (1977). Soil and vegetation system, Clarendon, Oxford.
- [22] Ukpong, I. E. (1995). Vegetation and soil acidity of a mangrove swamp in South-Eastern Nigeria. Soil Use and Management. 11:141-144.
- [23] Walkey, A. and Black, I. A. (1984). An Examination of the Digestive Method of Determining Soil Organic Matter and Proposed Modification of the Chronic Acid Titration Method. 10-18.
- [24] Wilde, S. A. (1958). Forest soils-Their properties and relation to silviculture. Ronald press co. New York